

A new phenotypic screening platform that identifies biologically-relevant targets and lead compounds for the treatment of Parkinson's disease

Grant Award Details

A new phenotypic screening platform that identifies biologically-relevant targets and lead compounds for the treatment of Parkinson's disease

Grant Type: Inception - Discovery Stage Research Projects

Grant Number: DISC1-10674

Investigator:

Name: Vicki Nienaber

Institution: Zenobia Therapeutics

Type: PI

Disease Focus: Parkinson's Disease, Neurological Disorders

Award Value: \$150,000

Status: Pre-Active

Grant Application Details

Application Title: A new phenotypic screening platform that identifies biologically-relevant targets and lead

compounds for the treatment of Parkinson's disease

Public Abstract:

Research Objective

Demonstrate that our HitFinder™ library can be screened for phenotypic changes in A53T-IPSCderived dopaminergic neurons and use a secondary handle to identify the targets responsible.

Impact

This technology combines phenotypic screening and target-ID eliminating the need to bias assays and/or screening libraries permitting application directly in iPSC-derived cells.

Major Proposed Activities

- Prepare screening library including purchase of compounds and addition of chemical handles for target identification
- Screen library for phenotypic changes in iPSC-derived engineered A53T-synuclein dopaminergic neurons: single point followed by dose-response
- Large-scale preparation of compound-target complex in A53T IPSC-DA-neurons under conditions of phenotypic assay and confirm phenotypic change for target-ID.
- Process scaled-up A53T-DA neurons and attach an affinity tag to the compound-target complex. Identify number of targets that reacted with the ligand (selectivity) and the identity of these targets.

California:

Statement of Benefit to This technology has the potential for broad impact on patients. Immediately, compounds and targets identified from this screen can progress into a drug discovery program to identify new treatments for Parkinson's disease (PD). PD is estimated to affect 36-60,000 Californians. Application of iPSC-derived neurons permits screening in patient-derived cells to determine if therapeutics/targets are relevant in all forms of PD (genetic and sporadic) and eventually expand to other diseases.

Source URL: https://www.cirm.ca.gov/our-progress/awards/new-phenotypic-screening-platform-identifies-biologically-relevant-targetsand